Glucose Isomerase
from *Streptomyces murinus*

CAT No C1686 Grade ≥350 U/g Application Create high fructose level syrup in industry Storage 2–8 °C

Product Name: Glucose Isomerase from *Streptomyces murinus* m1033
CAS Number: 9023-82-9
Formula: \(\text{C}_{16} \text{H}_{22} \text{O}_{11} \)
Specific activity: ≥350 U/g
Isoelectrical point: 7.0 – 7.5
Optimal pH: 7.0 – 7.5
Optimal temperature: 60°C
Activators: Mg\(^{2+}\), 2-10 mM
Inhibitors: D-xylose ketol-isomerase, Sweetyme® IT Extra, Xylose isomerase, D-xylose isomerase; D-xylose ketoisomerase; D-xylose ketol-isomerase

Suitability

Glucose Isomerase is also called as D-xylose ketol-isomerase. This enzyme participates in pentose and glucuronate interconversions and fructose and mannose metabolism. The enzyme is used industrially to convert glucose to fructose in the manufacture of high-fructose corn syrup. It is sometimes referred to as "glucose isomerase".

In enzymology, a xylose isomerase (EC 5.3.1.5) is an enzyme that catalyzes the chemical reaction

\[
\text{D-xylose} \rightleftharpoons \text{D-xylulose}
\]

This enzyme belongs to the family of isomerases, specifically those intramolecular oxidoreductases interconverting aldoses and ketoses. The systematic name of this enzyme class is D-xylose aldose-ketose-isomerase. Other names in common use include D-xylose isomerase, D-xylulose ketoisomerase, and D-xylose ketol-isomerase.

Xylose isomerase enzymes exhibit a TIM barrel fold with the active site in the centre of the barrel and tetrameric quaternary structure.

Few anaerobic bacteria, fungi and plants express an intracellular metalloenzyme called D-xylose isomerase (XI). Most bacteria use the enzyme D-xylose isomerase to transform D-xylose to D-xylulose. D-XYlose isomerase (XI) converts the aldo-sugars xylose and glucose to their keto analogs xylulose and fructose.

Glucose isomerase produced from *Streptomyces murinus* was used for the isomerization of xylose and produce high-fructose corn syrup in the food industry to produce. Nova immoribilized this enzyme for large scale application for industry.

Unit Definition

one unit converts glucose to fructose at an initial rate of 1 μmole per min at standard analytical conditions

Specification

<table>
<thead>
<tr>
<th>Grade</th>
<th>Specific activity</th>
<th>Appearance</th>
<th>Salmonella sp.</th>
<th>Heavy metals</th>
<th>Pb</th>
<th>E. coli</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≥350 U/g</td>
<td>Off-white to Brown</td>
<td>≤25 colonies/g</td>
<td>≤30 ppm</td>
<td>≤5 ppm</td>
<td>≤30 colonies/g</td>
</tr>
</tbody>
</table>